Teaching Plan: 2020- 21

Department: I.T. Class: T.Y.B.Sc.(I.T.) Semester: V

Subject: Software Project Management

Name of the Faculty: Navneet Kaur Nagpal

Month	Topics to be Covered	Internal Assessment	Number of Lectures
August	Why is Software Project Management Important? What is a Project? Software Projects versus Other Types of Project, Contract Management and Technical Project Management, Activities Covered by Software Project Management, Plans, Methods and Methodologies, Some Ways of Categorizing Software Projects, Project Charter, Stakeholders, Setting Objectives, Business Case, Project Success and Failure		12
September	Success and FandreWhat is Management? Management Control, Project Management Life Cycle, Traditional versus Modern Project Management Practices, Project Portfolio Management, Evaluation of Individual Projects, Cost benefit Evaluation Techniques, Risk Evaluation, Programme Management, Managing the Allocation of Resources within Programmes, Strategic Programme Management, Creating a Programme, Aids to Programme Management, Introduction to Step Wise Project Planning, Step 0: Select Project, Step 1: Identify Project Scope and Objectives, Step 2: Identify Project Infrastructure, Step 3: Analyse Project Characteristics, Step 4: Identify Project Products and Activities, Step 5: Estimate Effort for Each Activity, Step 6: Identify Activity Risks, Step 7: Allocate Resources, Step 8: Review/Publicize Plan, Steps 9 and 10: Execute Plan/Lower Levels of Planning, Build or Buy? Choosing Methodologies and Technologies, Software Processs Models, Choice of Process Models, Structure versus Speed of		16

	Delivery, The Waterfall Model, The Spiral Model,	
	Software Prototyping, Other Ways of	
	Categorizing Prototypes, Incremental Delivery,	
	Atern/Dynamic Systems Development Method,	
	Rapid Application Development, Agile Methods,	
	Extreme Programming (XP), Scrum, Lean	
	Software Development, Managing Iterative	
	Processes, Selecting the Most Appropriate	
	Process Model	
October	Where are the Estimates Done? Problems with	16
	Over and Under Estimates, The Basis for	-
	Software Estimating, Software Effort Estimation	
	Techniques, Bottom up Estimating, The Top	
	down Approach and Parametric Models, Expert	
	Judgment, Estimating by Analogy, Albrecht	
	Function Point Analysis, Function Points Mark II,	
	•	
	COSMIC Full Function Points, COCOMO II, Cost	
	Estimation, Staffing Pattern, Effect of Schedule	
	Compression, Capers Jones Estimating Rules of	
	Thumb, Objectives of Activity Planning, Project	
	Schedules, Projects and Activities, Sequencing	
	and Scheduling Activities, Network Planning	
	Models, Formulating a Network Model, Adding	
	the Time Dimension, Forward Pass, Backward	
	Pass, Identifying the Critical Path, Activity Float,	
	Shortening the Project Duration, Identifying	
	Critical Activities, Activity on Arrow Network,	
	Risk, Categories of Risk, Risk Management	
	Approaches, A Framework for Dealing with Risk,	
	Risk Identification, Risk Assessment, Risk	
	Planning, Risk Management, Evaluating Risks to	
	the Schedule, Boehm's Top 10 Risks and Counter	
	Measures, Applying the PERT Technique, Monte	
	Carlo Simulation, Critical Chain Concepts	
November	Nature of Resources, Identifying Resource	
	Requirements, Scheduling Resources, Creating	16
	Critical Paths, Counting the Cost, Being Specific,	
	Publishing the Resource Schedule, Cost	
	Schedules, Scheduling Sequence,	
	Creating the Framework, Collecting the Data,	
	Review, Visualizing Progress, Cost Monitoring,	
	Earned Value Analysis, Prioritizing Monitoring,	
	Getting the Project Back to Target, Change	
	Control, Software Configuration Management ,	
	types of Contract, Stages in Contract Placement,	
	Typical Terms of a Contract, Contract	
	Management, Acceptance Understanding	
	Behavior, Organizational Behavior: A	

	Background, Selecting the Right Person for the Job, Instruction in the Best Methods, Motivation, The Oldham Hackman Job Characteristics Model, Stress Management, Health and Safety, Some Ethical and Professional Concerns, Decision Making, Organization and Team Structures, Coordination Dependencies, Dispersed and Virtual Teams, Communication Genres, Communication Plans, Leadership, The Place of Software Quality in Project Planning, Importance of Software Quality, Defining Software	
December	Quality, Software Quality Models, ISO 9126, Product and Process Metrics, Product versus Process Quality Management, Quality Management Systems, Process Capability Models, Techniques to Help Enhance Software Quality, Testing, Software Reliability, Quality Plans, Reasons for Project Closure, Project Closure Process, Performing a Financial Closure, Project Closeout Report	12

Sign of Faculty

Teaching Plan: 2020 - 21

Department: I.T. Class: T.Y.B.Sc.(I.T.) Semester: V

Subject: Internet of Things

Name of the Faculty: Ms. Shruti Save

Month	Topics to be Covered	Internal	Number of
	Unit I	Assessment	Lectures
August	The Internet of Things: An Overview:		12
	The Flavour of the Internet of Things,		
	The "Internet" of "Things", The		
	Technology of the Internet of Things,		
	Enchanted Objects, Who is Making the		
	Internet of Things?		
	Design Principles for Connected		
	Devices: Calm and Ambient		
	Technology, Magic as Metaphor,		
	Privacy, Keeping Secrets, Whose Data Is		
	It Anyway? Web Thinking for		
	Connected Devices, Small Pieces,		
	Loosely Joined, First-Class Citizens on		
	The Internet, Graceful Degradation,		
	Affordances		
	Internet Principles: Internet		
	Communications: An Overview, IP, TCP,		
	The IP Protocol Suite (TCP/IP), UDP, IP		
	Addresses, DNS, Static IP Address		

	Assignment, Dynamic IP Address	Τ	
	Assignment, IPv6, MAC Addresses		
	UNIT I		18
September	TCP and UDP Ports, An Example: HTTP		
	Ports, Other Common Ports,		
	Application Layer Protocols, HTTP,		
	HTTPS: Encrypted HTTP, Other		
	Application Layer Protocols.		
	Unit II		
	Thinking About Prototyping: Sketching,		
	Familiarity, Costs versus Ease of		
	Prototyping, Prototypes and		
	Production, Changing Embedded		
	Platform, Physical Prototypes and Mass		
	Personalisation, climbing into the		
	Cloud, Open Source versus Closed		
	Source, Why Closed? Why Open?		
	Mixing Open and Closed Source, Closed		
	Source for Mass Market Projects,		
	Tapping into the Community.		
	UNIT II:		
	Prototyping Embedded Devices:		
	Electronics, Sensors, Actuators, Scaling		
	Up the Electronics, Embedded		
	Computing Basics, Microcontrollers,		
	System-on-Chips, Choosing Your		
	Platform, Arduino, developing on the		
	Arduino, Some Notes on the Hardware,		

	Openness, Raspberry Pi, Cases and	
	Extension Boards, Developing on the	
	Raspberry Pi, Some Notes on the	
	Hardware, Openness.	
	UNIT III	20
October	Prototyping the Physical Design:	
	Preparation, Sketch, Iterate, and	
	Explore, Nondigital Methods, Laser	
	Cutting, Choosing a Laser Cutter,	
	Software, Hinges and Joints, 3D	
	Printing, Types of 3D Printing,	
	Software, CNC Milling,	
	Repurposing/Recycling.	
	Prototyping Online Components:	
	Getting Started with an API, Mashing	
	Up APIs, Scraping, Legalities, writing a	
	New API, Clockodillo, Security,	
	implementing the API, Using Curl to	
	Test, Going Further, Real-Time	
	Reactions, Polling, Comet, Other	
	Protocols, MQ Telemetry Transport,	
	Extensible Messaging and Presence	
	Protocol, Constrained Application	
	Protocol.	
	UNIT IV	
	Techniques for Writing Embedded	
	Code: Memory Management, Types of	
	Memory, Making the Most of Your	

	RAM, Performance and Battery Life,	
	Libraries, Debugging	
	UNIT IV:	
November	Business Models: A Short History of	
	Business Models, Space and Time,	
	From Craft to Mass Production, The	
	Long Tail of the Internet, Learning from	
	History, The Business Model Canvas,	
	Who Is the Business Model For?	
	Models, Make Thing, Sell Thing,	
	Subscriptions, Customisation, be a Key	
	Resource, Provide Infrastructure:	
	Sensor Networks, take a Percentage,	
	Funding an Internet of Things Startup,	
	Hobby Projects and Open Source,	
	Venture Capital, Government Funding,	
	Crowdfunding, Lean Startups.	
	UNIT V	
	Moving to Manufacture: What Are You	
	Producing? Designing Kits, Designing	
	Printed circuit boards, Software	
	Choices, The Design Process,	
	Manufacturing Printed Circuit Boards,	
	Etching Boards, Milling Boards.	
	Assembly, Testing, Mass-Producing the	
	Case and Other Fixtures, Certification,	
	Costs, Scaling Up Software, Correctness	
	and Maintainability, Performance, User	
	Community.	

December	UNIT V:	04
	Ethics: Characterizing the Internet of	
	Things, Privacy, Control, Disrupting	
	Control, Crowdsourcing, Environment,	
	Physical Thing, Electronics, Internet	
	Service, Solutions, The Internet of	
	Things as Part of the Solution,	
	Cautious Optimism, The Open Internet	
	of Things Definition.	

Sign of Faculty

Teaching Plan: 2020 - 21

Department: I.T. Class: T.Y.B.Sc.(I.T.) Semester: V

Subject: Advance Web Programming

Name of the Faculty: Snehal s.Borlikar

Month	Topics to be Covered	Internal Assessment	Number of Lectures
August	Unit 1: Introduction to .net C# language, Unit 1: Type objects and Namespace		15
September	Unit 2: Web Form Fundamentals Unit2: Web Form Controls		25
October	Unit 3: Error handling, logging, State Management. Unit 3: Style, Themes, Master pages		20
November	Unit 4: ADO.net Fundamentals, Data Binding Unit 4: Data Controls		10
December	Unit 5:xml, security fundamentals, Ajax		10

Sign of Faculty

Teaching Plan: 2020 - 21

Department: I.T. Class: T.Y.B.Sc.(I.T.) Semester: V

Subject: Artificial Intelligence

Name of the Faculty: Ms.Shweta Shirsat

Month	Topics to be Covered	Internal Assessment	Number of Lectures
August	Introduction: What is Artificial Intelligence? Foundations of AI, history, the state of art AI today. Intelligent Agents: agents and environment, good behavior, nature of environment, the structure of agents.		15
September	Solving Problems by Searching: Problem solving agents, examples problems, searching for solutions, uninformed search, informed search strategies, heuristic functions Beyond Classical Search: local search algorithms, searching with non-deterministic action, searching with partial observations, online search agents and unknown environments.		13

October	Adversarial Search: Games, optimal decisions in games, alpha-betapruning, stochastic games, partially observable games, state-of-the-are game programs.Logical Agents: Knowledge base agents, The Wumpus world, logic,propositional logic, propositional theorem proving, effectivepropositional model checking, agents based on propositional logic.	12
November	 First Order Logic: Syntax and semantics, using First Order Logic, Knowledge engineering in First Order Logic. Inference in First Order Logic: propositional vs. First Order, unification and lifting, forward and backward chaining, resolution. Knowledge Representation: Categories and Objects, events, mental events and objects, reasoning systems for categories, reasoning with default information, Internet shopping world 	10

	Planning: Definition of Classical Planning,		10
December	Algorithms for planning		
December			
	as state space search, planning graphs,		
	other classical planning		
	approaches, analysis of planning		
	approaches, Time, Schedules and		
	resources, hierarchical planning, Planning		
	and Acting in Nondeterministic		
	Domains, multiagent planning,		
1		1	

Shissot

Sign of Faculty

Teaching Plan: 2020 - 21

Department: I.T. Class: T.Y.B.Sc.(I.T.) Semester:V

Subject: Next Generation Technologies

Name of the Faculty: Supritha Bhandary

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
August	Big Data: Introduction to Big Data,		10
August	Three Vs of Big data, usage of Big data,		
	Big data Challenges		
	NoSQL: Definition, ACID Vs BASE, CAP Theorem, Advantages and		
	, U		
	Disadvantages, MongoDB data Model: JSON and BSON, Capped collection,		
	Schema Evolution		
	Introducing MongoDB: Non-Relational		
	0 0		
	approach, SQL comparision Using MongoDB shell, creating		16
September	Using MongoDB shell, creating collection, MapReduce, aggregate(),		10
	Conditional operators, MongoDB		
	document Data Model Approach.		
	MongoDB Architecture: core processes,		12
October	mongod, mongo, Tools, Standalone		12
	Deployment, Cluster Architecture		
	MongoDB storage engine: Data storage		
	Engine, data file, GridFS, Indexing,		
	types of indexes.MongoDB Use Cases		
	sharding, managing the data, MongoDB		12
November	Limitations, MongoDB Best Practices		12
	The End of Disk? SSD AND In-Memory		
	Databases: Solid State Disk, the		
	Economics of Disk, SAP HANA,		
December	JQuery: Introduction, Ajax with JQuery,		10
	Image Slider		-
	JSON: Introduction, JSON Grammar,		
	JSON vs XML, Data Interchanging,		
	JSON HTML, JSNOP		

Sign of Faculty